Exploring the quantum realm with Jim Al-Khalili
If you’ve ever heard of Schrödinger’s cat, watched Avengers: Endgame, or binge-watched The Big Bang Theory, then a branch of physics called quantum mechanics may sound familiar. Quantum mechanics (or quantum theory) is one of two theories in physics that work to describe the fundamental properties of the universe, the other being Einstein’s theory of relativity.
Science fiction has wrapped quantum mechanics, which focuses on the atomic level, with an intimidating veil of esoterica and counterintuitivity – teleportation, things being in two places at once, particles also existing as waves, and so on. But the fact is a lot of the things we rely on every day wouldn’t exist without it. Smartphones, MRI scans, GPS, and even the structure of the internet rely on fundamental universal principles that it explains.
However, there has been much debate about whether the principles of physics and chemistry that underpin inanimate objects could also apply to biological systems. Enter quantum biology, a currently speculative field focused on studying biological systems through the lens of quantum mechanics. In the next decade or so, it could help to improve our understanding of a whole swathe of biological phenomena – DNA mutations, photosynthesis, and even the migration patterns of birds.
In this episode of Create the Future, we talk to someone well-versed in the intersectional study of quantum biology: QEPrize Judge Professor Jim Al-Khalili. We speak to Jim about his work and what he describes as the 'dawn of quantum bioengineering’. We also explore how Einstein's theory of relativity affects GPS, the relationship between science and engineering, and the important roles that they both play in society.