Queen Elizabeth Prize for Engineering

Collaboration

Making the invisible, visible: addressing corrosion with smart coatings

  • Posted by QEPrize Admin
  • 31 May 2017

BP-supported scientists are researching the potential of smart protective coatings that would flag up damage, and even fix it, before it’s visible to the naked eye.

Two trillion dollars a year – that is the estimated cost of corrosion globally for all industries. Rust may be unsightly to the eye, whether it is on a ship’s deck or a wind turbine, but it is a much bigger issue than aesthetics. Trying to avoid this common issue can be expensive and time-consuming.

Atmospheric corrosion can occur in any structure made of steel, and starts to happen when oxygen reacts with the iron producing the tell-tale brownish-red rust. The usual mitigation is through the extensive and continual application of protective coatings which provide a barrier to oxygen and water.

Read More

Industrial Fellowships: collaboration at the cutting edge of engineering

  • Posted by QEPrize Admin
  • 31 May 2017

Working with other teams and individuals is one of the most vital aspects of engineering, allowing teams to achieve far more than they could ever do alone. Not only can projects be completed faster and cheaper when working together, but pooling and knowledge and expertise can act as a key driver for innovation.

At the Royal Academy of Engineering, an Industrial Fellowship scheme gives researchers the opportunity to do just that. Joining forces with industrial partners, academics from across the field of engineering can undertake their own collaborative research projects in an industrial environment.  

Read More

Simple baking ingredient rises to the engineering challenge

  • Posted by QEPrize Admin
  • 25 May 2017

Bioengineers from London’s Imperial College may have found a way of turning regular baker’s yeast into the mini medicine factories of the future.

The team have re-engineered individual yeast cells to produce a special type of the antibiotic penicillin, using natural compounds called ‘nonribosomal peptides’. Usually produced by bacteria and fungi, these natural products form the basis of most modern antibiotics. With the vast array of antibiotics on offer however, many bacteria are developing a resistance to drugs, giving rise to a host of new superbugs. In an effort to beat antimicrobial resistance, engineers must find new ways to create antibiotic drugs.

Read More

How Collaborative Engineering Can Transform the Future of Cities

  • Posted by QEPrize Admin
  • 23 May 2017

Newspapers, magazines and social media sites are buzzing with the latest ideas and inventions that will bring the city of the future to life. For these ideas to be realised, however, innovation needs a collaborative approach.

Not only does the science of artificial intelligence and the Internet of Things need to be fully developed, but so does the day-to-day infrastructure of our urban environments. Here’s how collaborative engineering can transform the future of cities.

Read More

How I got here: An interview with Orla Murphy

  • Posted by QEPrize Admin
  • 17 May 2017

Orla Murphy is a forward model quality engineer working in Jaguar Land Rover’s electrical quality team. This role looks at improving the quality of electrical components in current lines, as well as improving processes to design better quality electrical elements in future vehicles. Previously, Orla worked as an audio engineer, bringing together her love of science, maths and music to optimise the sound systems in Jaguar Land Rover’s vehicles.

Why did you first become interested in engineering?

I always enjoyed maths and science lessons at school – and was good at both subjects – so when I was 16, I entered the BT Young Scientist competition in Ireland. I really loved the experience of scientifically investigating a problem and coming up with a solution. It really sparked my interest in science and engineering as a future career option.

Read More

Hitachi, Ltd. join the Queen Elizabeth Prize for Engineering as latest corporate donor

  • Posted by QEPrize Admin
  • 16 May 2017

The world’s most prestigious engineering prize, the Queen Elizabeth Prize for Engineering (QEPrize), today announces Hitachi, Ltd. as their latest corporate donor.

Hitachi, Ltd. joins BAE Systems, BP, GlaxoSmithKline, Jaguar Land Rover, National Grid, Nissan Motor Corporation, Shell UK Ltd., Siemens UK, Sony, Tata Consultancy Services, Tata Steel Europe and Toshiba in supporting the prize.

Lord Browne of Madingley, Chairman of the Queen Elizabeth Prize for Engineering Foundation, said:

‘I am delighted to welcome Hitachi, Ltd. to the list of international companies whose generous support enables the work of the Queen Elizabeth Prize for Engineering. Hitachi has a proud history of excellence and innovation in engineering, not only in Japan but throughout the world. They share our belief that in showcasing the heights that the engineering profession reaches and the diversity of the world’s leading engineers we can encourage a new generation to meet the challenges of the next decades.

Read More

Biology class, with added robots

  • Posted by QEPrize Admin
  • 12 May 2017

Encouraging children and young adults to think about a career in engineering often seems like an uphill struggle. However, some areas of engineering can prove more appealing than others, with many taking an interest before they have even left school.

Initiatives such as Code Club, Fire Tech Camp and Camp Invention are introducing children as young as five to the basics of programming and software engineering. With cheap gadgets like the Raspberry Pi and BBC Microbit easily available, coupled with the simplicity of Scratch programming, school children are more computer literate than ever before.

Read More

SolarLeaf: Powering engineering with biology

  • Posted by QEPrize Admin
  • 10 May 2017

Nestled in the Wilhelmsburg quarter of Hamburg and cradled by the River Elbe, lives a building like no other. Shrouded in 129 ‘leaves’, the emerald exterior of the building lives, breathes and grows.

A pioneering project from engineering giants, Arup, the building houses the world’s first photobioreactor façade, using photosynthesis to heat and power the homes inside.

Ove Arup, a trailblazer in engineering and architectural collaboration, is responsible for bringing some of the world’s most iconic structures to life. Examples of his work include the beautifully art deco, if biologically impractical, penguin pool at ZSL London Zoo; the world-famous overlapping sails of the Sydney Opera House; and the inside-out Centre Pompidou in Paris.

Read More